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We discuss various numerical approaches for studying the chaotic dynamics of multidimensional Hamiltonian 
systems, focusing our analysis on the chaotic evolution of initially localized energy excitations in the 
disordered Klein-Gordon (DKG) oscillator chain in one spatial dimension. The system’s linear modes are 
exponentially localized by disorder and consequently Anderson localization [1] is observed in the absence of 
nonlinearity. On the other hand, nonlinear interactions result to the destruction of the initial energy 
localization, leading to the eventual subdiffusive spreading of wave packets in two different dynamical 
regimes (the so-called ‘weak’ and ‘strong chaos’ spreading regimes), which are characterized by particular 
power law increases of the wave packet’s second moment and participation number [2-6]. 
 
Quantifying the strength of chaos through the computation of the maximum Lyapunov exponent (MLE, see 
for example [7] and references therein), we observe that the index exhibits power law decays, with different 
exponents for the weak and strong chaos regimes, whose values are distinct from -1 seen in the case of regular 
motion [8-10]. The spatiotemporal evolution of the coordinates’ distribution of the deviation vector used to 
compute the MLE (the so-called deviation vector distribution – DVD) reveals that chaos is spreading through 
the random oscillation of localized chaotic hot spots in the excited part of the wave packet [8-10]. 
Furthermore, the implementation of the SALI/GALI2 chaos indicator [11-13] permits the efficient 
discrimination between localized and spreading chaos, with the former dominating the dynamics for lower 
energy values, for which the system is approaching its linear limit [14]. In addition, by computing the time 
variation of the fundamental frequencies of the motion of each oscillator in the lattice, i.e. the so-called 
frequency map analysis (FMA) technique [15-17], we reveal several characteristics of the dynamics for both 
the weak and strong chaos regimes [18], related to the location of highly chaotic oscillators and the 
propagation of chaos.  
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