Characterization of degree and energy distributions in asymptotically scale-free ddimensional random networks

<u>Ugur Tirnakli</u>

Izmir University of Economics, izmir, Turkey

It has already been reported in the literature [1,2] that a large class of preferential-attachment-based random d-dimensional growing networks exhibits q-exponential degree (k_i , defined as the number of sites that are already attached to site i) or energy (ε_i , defined as $\varepsilon_i = \Sigma_j^{k_i} w_{ij}/2$) distribution, where the link weights w_{ij} are random variables drawn from a quite generic distribution. The corresponding asymptotic power-law behavior is determined by the ratio α_A/d where α_A characterizes the distance-dependence in a preferential-attachment rule $\Pi_{ij} \propto \varepsilon_i/d_{ij}^{\alpha_A}$ ($\alpha_A \ge 0$), where d_{ij} being the Euclidean distance between *i* and *j*. In order to cover more complex and realistic phenomena, we consider here a more general form, namely $\Pi_{ij} \propto \varepsilon_i / [d_{ij}^{\alpha_A} + c d_{ij}^{\gamma_A} (\gamma_A > \alpha_A, c \ge 0)$. An interesting crossover is then observed and studied in the power-law behavior of the energy distribution [3].

References

[1] S. Brito et al., Role of dimensionality in complex networks, Sci. Rep. 6, 27992 (2016).

[2] R. M. de Oliveira et al., Connecting complex networks to nonadditive entropies, Sci. Rep. 11, 1130 (2021).[3] U. Tirnakli, C. Tsallis, Crossover in asymptotically scale-free d-dimensional random networks, in preparation.